

Meistream mit GWFcoder® MP

Woltmanzähler

Ihre Vorteile

- Revolutionäre Multiprotokoll-Schnittstelle (IEC und M-Bus in einem Zähler):
 - Investitionsschutz aufgrund der Interoperabilität des Zählers
- Übertragung des effektiven Zählwerkstandes:
 Kein Datenverlust und somit Sicherheit bei der
 Verbrauchsabrechnung
- Kein Parametrieraufwand für Geräte-Identifikation und Zählerabgleich beim Anschluss an ein Auslesesystem (Plug & Play):
 Einfache und rasche Montage vor Ort
- Messung kleiner Durchflussmengen:
 Erhöhung der Wirtschaftlichkeit
- Herausnehmbarer Messeinsatz:
 Nachrüstbarkeit bzw. Austauschbarkeit
 gewährleistet
- Ein Messeinsatz für diverse Gehäuse: Geringere Lagerhaltungskosten

Einsatzgebiete

- Messung hoher Durchflüsse, z.B.
 - Nach Pumpen oder bei Übergabestellen
 - Zu- und Abflüsse von Reservoirs
- Messung geringer Durchflüsse in Schwachlastzeiten
- Automatisierte mobile oder Festnetzauslesung der abrechnungsrelevanten Daten
- Verkabelte oder Funk-Fernauslesung schwer zugänglicher Messstellen, z.B. Schächte

Eigenschaften

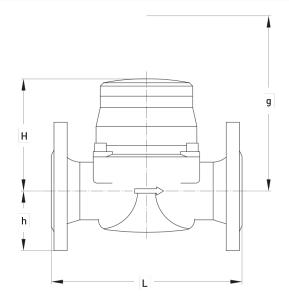
- Universelle Einbaulage
- Keine Einlaufstrecke notwendig
- Zählwerk 355° drehbar
- Maximaler Betriebsdruck PN 16 bar
- Temperatur bis 50 °C
- Hydrodynamische, radiale und axiale Balance des Flügelrades
- Lieferbar in den üblichen Baulängen für WS- und WP-Zähler
- Optimaler Korrosionsschutz durch Pulverbeschichtung
- Buntmetallfreie Ausführung bis PN 16 bar
- SVGW-Zertifizierung
- CE Konformität nach Europäischer Messmitteldirective (MID)
- Überflutungssicheres Zählwerk (IP68) mit Multiprotokoll-Schnittstelle (MP), 5 mKabel sowie Aufnahme eines HRI-Impulsgebers
- M-Bus Standardlast: 2 Lasten (3 mA)

Optionen

- Hochdruckversion bis PN 40 bar
- Hochauflösender Impulsgeber HRI
 - Dokumentation: HRI EPd10213
- Funkmodul RCM® split
 - ☐ Dokumentation: RCM® EPd40232
- Funkmodul RCM®-LRW
 - Dokumentation: RCM®-LRW... EPd40261

Technische Daten

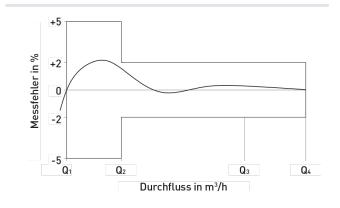
Nennweite ¹⁾	DN	mm	50	50	65	65	80	80	100	100	125	150	150	200	250	300
Nenndruck ²⁾	PN	bar	16	16	16	16	16	16	16	16	16	16	16	16	16	16
Zulässige Dauerbelastung	Q 3	m ³ /h	50	50	70	70	120	120	230	230	250	450	450	800	1250	1400
Maximale Belastung (einige Minuten)	Q4	m ³ /h	90	90	120	120	200	200	300	300	350	600	600	1200	1600	2000
Trenngrenze ±2%	Q2	m ³ /h	0,4	0,4	0,63	0,63	0,51	0,51	0,81	0,81	1,02	1,6	1,6	4,03	6,3	16
Untere Messbereichs- grenze ±5%	Q1	m ³ /h	0,15	0,15	0,2	0,2	0,2	0,2	0,3	0,3	0,5	0,8	0,8	2	3,5	9
Temperatur		max.°C	50	50	50	50	50	50	50	50	50	50	50	50	50	50

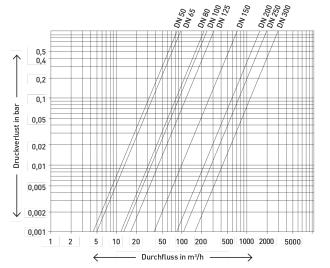

Masse und Gewich	Masse und Gewichte															
Baulänge	L	mm	200	270 ³⁾	200	300	225 ⁴⁾	300	250	360	250	300	500	350	450	500
Höhe	Н	mm	157	157	157	157	187	187	187	187	197	214	214	251	275	301
Höhe	h	mm	73	73	85	85	95	95	105	105	118	135	135	162	194	226
Ausbauhöhe Messeinsatz	g	mm	237	237	237	237	307	307	307	307	317	393	393	486	511	536
Gewicht Zähler		ca. kg	7,8	9,6	10,1	12	14,2	16,3	18,2	20,2	20,7	35,9	35,9	56,9	79,4	103,8
Gewicht Messeinsatz		ca. kg	1,5	1,5	1,5	1,5	3,2	3,2	3,2	3,2	3,2	5,9	5,9	9,6	9,6	9,6
Gewicht Gehäuse		ca. kg	6,3	8,1	8,6	10,5	11	13,1	15,0	17,0	17,5	30	30	47,3	69,8	94,2

¹⁾ Nennweite DN 40 auf Anfrage 2) Druckstufe PN 40 auf Anfrage 3) Auch in Baulänge 300 mm lieferbar

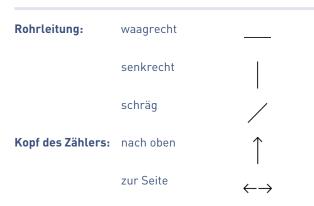
4)	Auch	in	Baulänge	200	mm	lieferbar

MID-Zulassungsd	MID-Zulassungsdaten															
Zulässige Dauerbelastung	Q3	m ³ /h	40	40	63	63	100	100	160	160	160	400	400	630	630	1000
Temperatur		max. °C	50	50	50	50	50	50	50	50	50	50	50	50	50	50
Messbereich horizontal			R160	R160	R160	R160	R315	R315	R315	R315	R250	R400	R400	R250	R125	R63
Messbereich vertikal			R100	R100	R100	R100	R125	R125	R160	R160	R125	R200	R200	R250	R100	R63
Standard- Lieferkenn- zeichnung			R100	R63												


Massbild


Werkstoffe

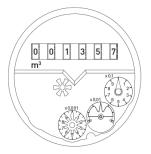
Gehäuse	Grauguss
Messeinsatz	Kunststoff
Messflügel	Kunststoff
Sonstige Werkstoffe	Messing / Nichtrostender Stahl


Messfehlerkurve

Druckverlustkurve

Einbaulagen

Inbetriebnahme-Hinweis

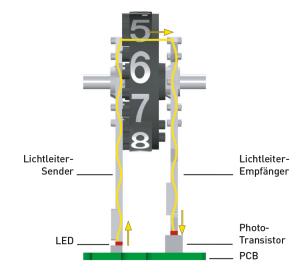


Bei Inbetriebnahme zwingend langsames Füllen der Leitungen mit Wasser (langsames Entlüften) beachten.

Zifferblätter

DN 50 - DN 125

DN 150 - DN 300



Nennweite	DN	50-125	150-300
Kleinster Skalenwert	m ³	0,0005	0,005
Registrierfähigkeit	m ³	1'000'000	10'000'000

Impulswertigkeit HRI Impulsgeber

Zählergrösse	DN 50125 1 Impuls =Liter	DN 150300 1 Impuls =Liter
Meistream	100 1000	1000 10000

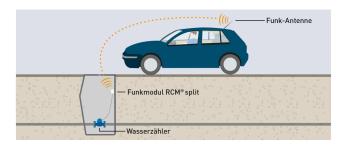
GWFcoder®-Technologie

Beim GWFcoder®-System werden die einzelnen Rollen des mechanischen Zählwerkes opto-elektronisch abgegriffen. Die unterschiedlich langen, asymmetrisch angeordneten Schlitze in den Zahlrollen werden mit 5 Lichtschranken (Lichtleiter-Sender und -Empfänger) auf ihre Stellung abgetastet. Die Lichtschranken sind mit Phototransistoren, LEDs und Lichtleitern realisiert, die alle nacheinander gescannt und ausgewertet werden. Die exakt definierte Position jeder einzelnen Zahlenrolle wird als Absolut-Zahlenrollenstand codiert und als Bestandteil des Protokolls über die GWFcoder®- Schnittstelle ausgelesen. Dieses Funktionsprinzip ist von GWF patentiert. Die GWFcoder®-Schnittstelle hat im Vergleich zu einem Zähler Impulsausgang einen unvergleichbar Informationsgehalt und erhöht die Auslesesicherheit. Ein GWFcoder®-Zählwerk benötigt keine Batterie, wodurch bestehende Revisionszyklen nicht beeinträchtigt werden. Die Energie für die Auslesung liefert das Auslesegerät.

Zusätzlich bieten die Produkte mit Zusatz «MP» (Multiprotokoll) die Flexibilität, zwischen Wandablesung (Induktiv oder CL), Wired M-Bus oder Funkauslesung zu wählen und das System per «Plug & Play» unbeschwert und schnell in Betrieb zu nehmen.

GWFcoder®-Datensatz

Medium	Wasser
Absolut-Zählwerkstand	123654 m ³
Seriennummer	43215678
Zähler-Grösse	DN 50


M-Bus: EN 13757 --> Kabelfarben schwarz / rot, polaritätsunabhängig

ECO: EN 13757-3 --> Kabelfarben schwarz / grün / rot, Polarität beachten!

Anwendungsbeispiel

Funkauslesung

Zähler mit GWFcoder®-Zählwerk wird mittels mobiler Infrastruktur (z.B. RCM® Funkmodul und MEx) automatisiert ausgelesen.

